

STAR Integrated Tracker
A. Rose for the STAR Collaboration,

Wayne State University, Detroit, MI, 48203 USA

We present the design and performance analysis of a new integrated track reconstruction code developed for the STAR experiment at
RHIC. The code is meant to replace multiple previous tracker codes written in FORTRAN many years ago, and to readily enable
integration of new and varied detector components. The new tracker is written from the ground up in C++ using a strong object -oriented
model. Key features are an abstract geometry model for representation of detector components, a flexible track representation model, a
built-in KALMAN filter for track parameter determination, and a powerful object factory model for fast handling of numerous small
objects such as hits and tracks. Critical issues emphasized in the implementation of this new tracker are optimization of track
reconstruction quality, minimization of reconstruction time, and memory footprint. The new tracker will be deployed and used for
analysis of data acquired during the RHIC year 3 run of the STAR experiment.

1. INTRODUCTION

The STAR Integrated Tracker Task Force is charged
with the development and implementation of a new
tracking package for the STAR experiment. The interest in
a new tracker spurred from the realization that the existing
tracker, written in FORTRAN, was increasingly difficult
to maintain, and could not readily be adapted or modified
to include tracking in detectors other than the STAR TPC.
It also became obvious the tracker speed would render
difficult the analysis of the very large datasets the STAR
experiment was about to accumulate. Moreover, the
ongoing commissioning of the SVT and FTPC was bound
to compound the problem, increase the complexity of the
code, and its running time. A new tracker was indeed
needed: one that could deliver equivalent performance in
terms of track reconstruction quality, but at much
increased speed, and with better maintainability and
flexibility. The new code shall be written with an object-
oriented design, provide for easy upgrades, addition or
substitution of components.

The integrated tracker is entering the final tuning and
deployment phase. The tracker is being tuned for such
components as energy loss and multiple scattering, hit
error parameterization, seed finder search cone size and
other factors. We present here an introduction to the
design an implementation of the code, as well as current
reconstruction performance.

2. DESIGN AND IMPLEMENTATION

The new tracker is meant to provide both track finding
and fitting functionality. Hits from measured with various
detector components must be associated to reconstruct
particle trajectories, and fitted to determine the curvature,
direction, and origin of the track. One must also, and more
generally, determine the momentum and species identity
of the particle.

The determination of the curvature is somewhat
straightforward. A minor difficulty however arises when
trying to reconstruct the momentum vector of the physical
particle. From a physics standpoint, the momentum vector
one seeks is the vector at the vertex of origin of the
particle. The problem is that the point of origin can be any

of the following: a main interaction vertex, a spurious
interaction vertex due to event pile-up, a secondary
vertex, or a scattering center.

The track reconstruction algorithm must therefore
make no a priori assumption as to the origin of the
particles; the assignment of the track to a particular
vertex of origin must be done after the track parameters
have been determined. Viewed as an object, the track
thus consists of a collection of points acquired or found
with the appropriate algorithm, a parameterization of
the track based on a fit of the data points to a model or
template, and a vertex of origin. Properties such as the
momentum (modulus or vector), and the particle
identity are then calculated afterwards on the basis of
the track parameters, and the known position of the
vertex of origin. Note that, one can make assumptions
about the vertex of origin, and include it in the fit for
the determination of the track parameters after the fact,
i.e. after it has been associated with the track.

One is then left with the core of the problem: finding
the tracks, and fitting them to the chosen (and
hopefully appropriate) track model to eventually
deduce the particle final state. It then appears natural to
define a “tracker” entity whose purposes are:

• To find the tracks based on a store or bank of
hits reconstructed within the relevant
detectors.

• To fit the hits using a suitable track model.
• To enable association with a vertex of origin

and optionally allow a refit of the data
including the vertex of origin.

• To calculate the final state particle
information.

2.1. General Layout

The virtue of a Kalman Filter approach is to
integrate in an efficient and compact way both the
finding and fitting steps [1]. In a detector such as
STAR, the track reconstruction in the Time Projection
Chamber (TPC), Silicon Strip Detector (SSD), and
Silicon Vertex Tracker (SVT), naturally proceeds from
the outside to the inside. Track densities on outer
layers of the TPC are smaller than on the inner layers,
there is thus much less ambiguity in forming and

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

1 ePrint nucl-ex/0307015THLT004

following tracks. The Kalman approach enables one to
progressively use the points available to refine the
knowledge of the track parameters, and extrapolate
(follow) the tracks inward. The calculation of the track
parameters and the extrapolation from layer to layer shall
proceed according to the canonical Kalman filter
algorithm described here. The finder however needs a
sensible seed before it can proceed in finding tracks.

Given that the number of hits in the STAR detector can
be rather large for a central Au+Au collision event, it is
imperative one implements a hit data store which enables
fast and efficient retrieval of the relevant points. The key
word is relevance. The finder shall not have to iterate on
all data points to find sensible candidates for the
continuation of tracks. One should thus define a measured
hit/point data store, which enables point retrieval based on
a layered, coarse grain pixe lization of the detector.

Additionally, given that as one follows the track into the
inner TPC sectors, or the SSD and SVT, ambiguity may
arise as to which point is best to add on a particular track.
It may thus become appropriate to fan out the tracks and
follow multiple leads concurrently.

The extension of tracks from the TPC to the SVT (or
backward) across structures such as the inner field cage of
the TPC raises the important issue of effects caused by
multiple scattering and energy losses. Given that much of
the particles detected by STAR have low momenta, it is
critical to include these effects properly in the propagation
and fit of the tracks. We adopted much of the work done
for the Alice detector by K. Safarik, and Y. Belikov [2].

The components, minimally needed, can be summarized
as follows:

• Hit entities that encapsulate the position, error,
energy loss, or deposition of track in detector
components.

• A hit container providing polymorphic hit data
storage and ultra fast retrieval of hits based on a
hierarchical, layered, coarse grain representation of
the detector.

• Abstract track, which define the notion of track.
• Concrete Track entities implemented following the

chosen track model to hold reference to hits
associated with the track, and with accessor and
modifiers properties to set and get the physical
properties of the track.

• A track container providing polymorphic track
storage and fast retrieval based on various sorting
algorithms needed, for instance, in the analysis of
track merging.

• Abstract Track Finder defining the notion of
tracker.

• Concrete Track Finder implementing the Kalman
track finder developed in the context of this project.

• Abstract track seed finder defining the notion of
track seed finder.

• Concrete Track Finder implementing a local seed
finder developed in the context of this project.

2.2. Tracking Algorithm

We have, in the past, explored a number of fitting
algorithms for the reconstruction of tracks in a
complex detector such as STAR. While global search
methods based on Hough transforms, or track template
may be deployed in very elegant, CPU efficient ways,
and do well for the reconstruction of primary tracks,
they typically do rather poorly in the reconstruction of
secondary tracks – those produced from the decay of
short lived particles, or from interaction within the
detectors. Moreover, the application of template
methods would require, for use with a detector such as
STAR, a huge set of templates (even if the obvious
cylindrical 12 sectors, two halves symmetry of the
TPC is exploited) and would end up requiring a rather
substantial memory allocation. Moreover, with such
methods, as the track finding is completed, one still
needs to perform a fit of the tracks that accounts for
energy loss and multiple coulomb scattering effects.
We have thus opted for a more conventional approach
based on a Kalman filter.

We present an outline of the general track finding
global strategy, track search, and fit algorithm.

2.2.1. Track Finding Strategy

The methodology used for the track reconstruction is
basically that of a “Kalman road finder”: given an
existing segment of a track, use the knowledge
provided by this segment, to predict and estimate
where the next point on a track might be; once you got
there, use the new point to update the knowledge of the
track. Overall, the approach can thus be qualified as
localized in space, or simply “local” by opposition to
the global search techniques alluded to in the
introduction of this section.

STAR uses the notions of global, primary, and
secondary tracks. Primary tracks are those emanating
directly from the main collision vertex whereas
secondary tracks are produced by decay or interaction
of primary tracks within the detector. The finite
resolution of the track reconstruction, and kinematical
focusing of decay products concur to render the
distinction between many secondary and primary
tracks rather difficult. STAR thus first analyze all
tracks as if they were secondary tracks, and do not
include the main collision vertex. One then search for
the fraction of those that present a good match with the
main collision vertex and can be labeled as primaries.
The tracks obtained in the first pass are labeled “global
tracks” and are fitted without a vertex. The primary
tracks are extension of the global tracks including the
vertex: their fit includes the vertex. Note that STAR
maintains a double list of tracks consisting of global
and primary tracks, where tracks that match the main
vertex appear twice - once as global and once as
primary. It is thus possible to recover the track

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

2 ePrint nucl-ex/0307015THLT004

parameters with and without the primary vertex for further
analysis of V0s and other decay topologies.

(Global) Track Finding/Fitting

Copy tracks to StEvent
as “Global” Tracks

Extend Tracks to Main Vertex, Refit

Find Main Vertex
Using StEvent

Copy extended tracks to
StEvent as “Primary” Tracks

Load Hits

(Global) Track Finding/Fitting

Copy tracks to StEvent
as “Global” Tracks

Extend Tracks to Main Vertex, Refit

Find Main Vertex
Using StEvent

Copy extended tracks to
StEvent as “Primary” Tracks

Load Hits

Figure 1: General Track Reconstruction Strategy.
Sequence of tasks involved in the track reconstruction.
Note that the main vertex is outside the scope of this
project.

The persistent data model for STAR (StEvent) is a class

containing a single event and its characteristics. This event
model also contains a track mo del called StTrack. As we
started to develop this new tracker, we felt the STAR
StTrack model did not provide the flexibility and
efficiency need for the tracker, and we thus designed and
implemented a new track model for use within the new
framework. Given that much of the existing STAR C++
code already use the StTrack model, we concluded it
would be simpler to keep the existing track model for i/o
purposes while conducting the track search with the
StiTrack model. This implies that once StiTrack tracks
have been found, they must be copied into the StEvent
format.

The track search and event reconstruction algorithm,
proceeds in five basic steps. The first step consists in the
actual track search and is described in the following

section. It produces so called “global tracks”, or tracks
with no association to the primary vertex. Those
global tracks are then copied into the STAR event
model StEvent/StTrack by a call to a filler helper class
method. The main vertex finder is called next (with
StEvent as argument) to find the vertex of the event. If
a vertex is found, the Kalman vertex finder is called,
once again, to attempt an extension of all found tracks
to the main vertex. The event filler is then called once
more to copy the newly found primary tracks, i.e. those
tracks that were successfully extended to the main
vertex. The track reconstruction is then completed.

2.2.2. Track Search and Fitting Algorithm

Tracking proceeds in two steps: candidate, or “seed”,
finding and track extension and fitting.The search first
uses a Kalman road finder to collect track candidates
and proceeds to extend these candidates sequentially
until no more tracks are found. No correlations
between tracks are considered although hits may
initially belong to more than one track.

The search for each track is initiated with a call to a
Track Seed Finder. The search stops when the seed
finder returns no seed. Track seeds are short track stubs
consisting of a sequence of a few hits. As such, they
carry just enough information to enable a very rough
estimate of the track position, direction, and curvature.
Seeds returned by the seed finder are not confined to
any specific region of the detector. However, in the
case of the STAR detector it is easier to find reliable
track patterns in a low track density environment, so
the search for seeds proceeds from the outside in.
Therefore, the seeds returned are typically located near
the periphery of the detector.

 The rough estimate of the track provided by the
seed is used by the Kalman finder to begin the
extension and search of the track through the detector.
Since the seeds predominantly lie near the periphery of
the detector, the Kalman search that follows first
proceeds inward. The Kalman-search proceeds through
the virtual layers of the detector, step by step. It is
considered complete when the search reaches the inner
most volume, or when a prescribed minimum number
of active detector layers have been crossed without
finding matching hits. The mathematical details of the
Kalman search and fit are described in the detailed
documentation of this project on the STAR web site.
The Kalman finder uses the direction and curvature of
the existing track stub to estimate (extrapolate) the
position of the next track hit on the next available
layer.

Matching hits are then sought on that layer within a
radius of confidence determined by the error
parameters of the track. If no matching hit is found, the
given layer is skipped. If one or more matching hit
candidates, one calculates the increment of track chi-
square caused by the addition of the candidate hits.
Candidates are deemed acceptable if the chi-square

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

3 ePrint nucl-ex/0307015THLT004

increment is smaller than a prescribed (user settable)
maximum. If more than one candidate hit satisfies the chi2
requirement, one selects and adds to the track the hit with
the lowest incremental chi-square value. Once a hit is
added, the track parameters (i.e. curvature, direction, etc)
are updated using the Kalman track model. As the track-
search proceeds inward and eventually reaches the inner
most detector volume, the track parameters are
progressively refined. The Kalman parameters (including
the chi-square) of the track at the last hit are the best
estimator of the track.

Given that the track search initially proceeds on the
basis of a seed that may lie deep inside the detector, it is
possible that the inward finding and fitting pass might
result in an incomplete track. Examination of the
outermost point of the track determines if the track should
be extended outward toward the edge of the detector. The
search is considered complete if a number of points
smaller than a prescribed minimum could be added, and
the tracked proceeds to the next seed. If the track can be
extended, the continuation of the track outward proceeds
similarly to the inward pass. Successive virtual layers are
search step by step for additional hits, and the track
parameters are updated at each step. Note however that in
order to initiate the outward pass, an outward refit of the
track is first performed in order to update the track
parameters of the outer most node of the track. The fit is
performed with the same machinery (methods) than those
used by the finder. The only difference lies in the fact that
the hits are already found, so one only needs to update the
track parameters. The outward search proceeds until the
edge of the detector or until too many layers have been
crossed without association of hits on to the track. The
same threshold is used here as for the inward pass.

If an outward pass is performed, and once completed,
the track parameters of the inner track nodes can be
considered under constrained since not all hits on the track
were used to calculate the track parameters for those
nodes. An inward track refit is thus accomplished.

If an outward pass is not performed, the track
parameters of the outer nodes can also be considered
under constrained. An outward final fit is thus conducted.
This fit is deemed necessary to provide best track
parameter knowledge on the outset of the track, which
may then be used by user analyses for extension of the
tracks to non-tracking detectors such as, in STAR, the
CTB, the TOF, or the EMC.

2.3. Deployment and Running Conditions

Reconstruction of STAR data is typically done at the
RHIC Computing Facility (RCF). Each node in the
computer bank contains two CPU’s sharing 1 gigabyte of
memory. Previously, reconstruction has been hindered by
process memory leaks, which swell the size of the
executable binary greater than 500 megabytes; thus
preventing more than one job per node and reducing the
efficiency of the computer farm. This situation required

supervision and occasional intervention by the analysis
team to maintain efficiency. Typically, individual
reconstruction had to be limited to small set of events
(<100), to curtail memory overrun.

The new tracking framework, through extensive use
of standard packages (such as the Standard Template
Library) and coding practices, has achieved little or no
memory leak at runtime, with a maximum memory
footprint significantly below the level of the previous
tracker. A snapshot of the memory footprint for the
tracking code was taken as 300 central events were
reconstructed. The memory size (in Mega-bytes) is
displayed in Figure 1 as a function of the event number
analyzed. A sharp rise can be seen as the tracker
allocates new blocks of memory to accommodate
larger events, but a plateau is reached as it reuses these
memory blocks for subsequent events.

We stress that we were able to operate the code to
analyze multiple thousands events without crash,
segmentation faults, or increase of the memory
footprint. This fact in itself will be a tremendous
improvement over the previous incarnation of the
STAR tracking code. We also stress that the code’s
memory footprint of less than 400 Mbytes enables
efficient concurrent use of the dual CPU computers
with 1 GB of available memory, located at BNL,
LBNL, Wayne State University group, and other

STAR institutions.
Figure 2: Memory footprint vs. Event number during
reconstruction. The increase in memory consumption
as larger events are encountered can be seen.

We also have paid careful attention to the speed
performance of the code. The code was designed to
avoid repeated unnecessary operations such object
instantiation and deletion. Data structures are designed
to allow fast retrieval of the relevant information. We
also avoided the use of string based searches, etc. The
code is thus rather fast. The time performance is
displayed in Figure 1b which shows a plot of the total
tracking time as a function of the number of tracks in
each event.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

4 ePrint nucl-ex/0307015THLT004

Figure 3: Total tracking time as a function of the number
of tracks reconstructed. CPU seconds is in arbitrary units,
which will vary depending on the speed of the computer
used.

The tracking time scales linearly with the number of

track reconstructed. Central collision events are
reconstructed in less than 15 CPU seconds on a typical
RCF node. This corresponds to an improvement of a factor
of 6 relative to the previous tracker which should be
extremely beneficial for the analysis of future production
of STAR data given that it is foreseen the data volume
accumulated each will substantially increase thanks to
improvement to the STAR data acquisition system. It shall
then be possible to analyze the data faster and possibly
through multiple iterations as needed.

3. PERFORMANCE CHARACTERIZATION

We present below a brief summary of the performance
of the tracker. The basic performance characteristics
detailed here are hit finding efficiency, track
reconstruction efficiency and momentum resolution.

3.1. Hit Association Efficiency

An essential measure of the performance of the tracker
is the efficiency of associating related hits into a track.
Figure 2 presents a study of the hit association efficiency
of the tracker based on simulated (Monte Carlo) events.
The plot shows in ordinate the average ratio of the number
of found hits (i.e. associated to a track) to the number of
hits belonging to a MC track as a function of the total
charged particle multiplicity (in an arbitrary but fixed
angular acceptance) of the events. The ratio of found hits
to MC hits peaks at ~80% for low multiplicity events
(peripheral collisions) and decreases monotonically for
increasing event multiplicity. The rather modest value of
80% arise in part because of losses at sector boundaries,
and in part due to hit losses in low pt track with segments
nearly parallel to the TPC pad planes. The monotonic
decrease occurs due to the increased space point
occupancy in more central, higher track multiplicity
events.

Figure 4: Average Hit Association efficiency as a
function of the event multiplicity. The hit association
efficiency is defined as the ratio hits properly
associated to the number of hits on the track.

3.2. Track Reconstruction Performance

We next consider the overall track reconstruction
efficiency as a function of the track transverse
momentum. Figure 5 presents a study based on
HIJING simulated events of the charged pion track
reconstruction efficiency as a function of the track
transverse momentum. The efficiency is defined as the
number of tracks reconstructed with more than 15 hits
(for MC tracks which also have more than 15 hits). The
efficiency achieved with the ITTF tracker is
consistently high (85-90%) for transverse momenta
above 0.5 GeV/c. Softer tracks, however, are
reconstructed with a lower efficiency by the ITTF
tracker. These low momentum tracks are typically lost
due to scattering in the material of the detector.

3.3. Transverse Momentum Resolution

The resolution of the reconstructed transverse
momentum, shown in Fig. 6, reaches a minimum at
500 MeV/c. This minimum (1.2%), although already
quite good, is expected to improve with further tuning.

The resolutions are very sensitive to the corrections
for energy loss of the track in the detector media.
These corrections involve detailed knowledge of the
radiation length the track transverses, and so are
dependant on an accurate estimate of the type,
thickness, and placement of materials in the detector.

Inaccurate understanding of the materials will result
in a bias to the measured momentum. Currently, the
bias for the integrated tracker is small, but still
significant for the lower momentum tracks (2% bias at
200 MeV/c). Work is proceeding to better reconstruct
the materials traversed. Currently, this correction is
accomplished through parameters describing the
composition and position of the detectors set in the
tracking code itself. Future plans include extracting
this information from an existing online database used
in simulation.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

5 ePrint nucl-ex/0307015THLT004

Figure 5: Track reconstruction efficiencies of the tracker as a function of the track transverse momentum. Efficiency is
calculated as the ratio between the number of reconstructed tracks matched to an input Monte Carlo track and the number
of Monte Carlo tracks within the detector acceptance. Triangles represent data from the most peripheral collisions, circles
from intermediate centralities, and squares from the most central.

Figure 6: Transverse Momentum Resolution as a function of transverse momentum for all tracked partic les. The best
momentum reconstruction is achieved for tracks with a transverse momentum of .6 GeV/c, with a resolution of 1.2.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

6 ePrint nucl-ex/0307015THLT004

4. CONCLUSIONS

The STAR Integrated tracker has shown very positive
initial results and performance. The implementation of the
Kalman track finding and fitting algorithm has been
validated. The code shows significant speed and stability
improvements over the previous FORTRAN-based
software package. To match track kinematic
reconstruction performance goals, set by the current
software, tuning and optimization of tracking parameters
must be studied.

Acknowledgments

This work is supported through the Department of
Energy, contract DE-FG02-92ER40713.

References

[1] P. Astier, et al., “Kalman Filter Track Fits and
Break Point Analysis”, arXiv:physics/9912034
v.1

[2] K. Safarik, Y. Belikov, “TPC Tracking and
Particle Identification in a High Density
Environment”, these proceedings.

Computing in High Energy and Nuclear Physics, 24-28 March 2003, La Jolla, California

7 ePrint nucl-ex/0307015THLT004

